Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution based on domain combinations: the case of glutaredoxins.

Identifieur interne : 000B30 ( Main/Exploration ); précédent : 000B29; suivant : 000B31

Evolution based on domain combinations: the case of glutaredoxins.

Auteurs : Rui Alves [Espagne] ; Ester Vilaprinyo ; Albert Sorribas ; Enrique Herrero

Source :

RBID : pubmed:19321008

Descripteurs français

English descriptors

Abstract

BACKGROUND

Protein domains represent the basic units in the evolution of proteins. Domain duplication and shuffling by recombination and fusion, followed by divergence are the most common mechanisms in this process. Such domain fusion and recombination events are predicted to occur only once for a given multidomain architecture. However, other scenarios may be relevant in the evolution of specific proteins, such as convergent evolution of multidomain architectures. With this in mind, we study glutaredoxin (GRX) domains, because these domains of approximately one hundred amino acids are widespread in archaea, bacteria and eukaryotes and participate in fusion proteins. GRXs are responsible for the reduction of protein disulfides or glutathione-protein mixed disulfides and are involved in cellular redox regulation, although their specific roles and targets are often unclear.

RESULTS

In this work we analyze the distribution and evolution of GRX proteins in archaea, bacteria and eukaryotes. We study over one thousand GRX proteins, each containing at least one GRX domain, from hundreds of different organisms and trace the origin and evolution of the GRX domain within the tree of life.

CONCLUSION

Our results suggest that single domain GRX proteins of the CGFS and CPYC classes have, each, evolved through duplication and divergence from one initial gene that was present in the last common ancestor of all organisms. Remarkably, we identify a case of convergent evolution in domain architecture that involves the GRX domain. Two independent recombination events of a TRX domain to a GRX domain are likely to have occurred, which is an exception to the dominant mechanism of domain architecture evolution.


DOI: 10.1186/1471-2148-9-66
PubMed: 19321008
PubMed Central: PMC2679010


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution based on domain combinations: the case of glutaredoxins.</title>
<author>
<name sortKey="Alves, Rui" sort="Alves, Rui" uniqKey="Alves R" first="Rui" last="Alves">Rui Alves</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain. ralves@cmb.udl.es</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vilaprinyo, Ester" sort="Vilaprinyo, Ester" uniqKey="Vilaprinyo E" first="Ester" last="Vilaprinyo">Ester Vilaprinyo</name>
</author>
<author>
<name sortKey="Sorribas, Albert" sort="Sorribas, Albert" uniqKey="Sorribas A" first="Albert" last="Sorribas">Albert Sorribas</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19321008</idno>
<idno type="pmid">19321008</idno>
<idno type="doi">10.1186/1471-2148-9-66</idno>
<idno type="pmc">PMC2679010</idno>
<idno type="wicri:Area/Main/Corpus">000B12</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B12</idno>
<idno type="wicri:Area/Main/Curation">000B12</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B12</idno>
<idno type="wicri:Area/Main/Exploration">000B12</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution based on domain combinations: the case of glutaredoxins.</title>
<author>
<name sortKey="Alves, Rui" sort="Alves, Rui" uniqKey="Alves R" first="Rui" last="Alves">Rui Alves</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain. ralves@cmb.udl.es</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida</wicri:regionArea>
<wicri:noRegion>Lleida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vilaprinyo, Ester" sort="Vilaprinyo, Ester" uniqKey="Vilaprinyo E" first="Ester" last="Vilaprinyo">Ester Vilaprinyo</name>
</author>
<author>
<name sortKey="Sorribas, Albert" sort="Sorribas, Albert" uniqKey="Sorribas A" first="Albert" last="Sorribas">Albert Sorribas</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Archaea (genetics)</term>
<term>Bacteria (genetics)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Recombination, Genetic (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, Protein (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence de protéine (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Archéobactéries (génétique)</term>
<term>Bactéries (génétique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Recombinaison génétique (génétique)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Archaea</term>
<term>Bacteria</term>
<term>Recombination, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Archéobactéries</term>
<term>Bactéries</term>
<term>Glutarédoxines</term>
<term>Recombinaison génétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Alignement de séquences</term>
<term>Analyse de séquence de protéine</term>
<term>Animaux</term>
<term>Phylogenèse</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Protein domains represent the basic units in the evolution of proteins. Domain duplication and shuffling by recombination and fusion, followed by divergence are the most common mechanisms in this process. Such domain fusion and recombination events are predicted to occur only once for a given multidomain architecture. However, other scenarios may be relevant in the evolution of specific proteins, such as convergent evolution of multidomain architectures. With this in mind, we study glutaredoxin (GRX) domains, because these domains of approximately one hundred amino acids are widespread in archaea, bacteria and eukaryotes and participate in fusion proteins. GRXs are responsible for the reduction of protein disulfides or glutathione-protein mixed disulfides and are involved in cellular redox regulation, although their specific roles and targets are often unclear.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this work we analyze the distribution and evolution of GRX proteins in archaea, bacteria and eukaryotes. We study over one thousand GRX proteins, each containing at least one GRX domain, from hundreds of different organisms and trace the origin and evolution of the GRX domain within the tree of life.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our results suggest that single domain GRX proteins of the CGFS and CPYC classes have, each, evolved through duplication and divergence from one initial gene that was present in the last common ancestor of all organisms. Remarkably, we identify a case of convergent evolution in domain architecture that involves the GRX domain. Two independent recombination events of a TRX domain to a GRX domain are likely to have occurred, which is an exception to the dominant mechanism of domain architecture evolution.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19321008</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Mar</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution based on domain combinations: the case of glutaredoxins.</ArticleTitle>
<Pagination>
<MedlinePgn>66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2148-9-66</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Protein domains represent the basic units in the evolution of proteins. Domain duplication and shuffling by recombination and fusion, followed by divergence are the most common mechanisms in this process. Such domain fusion and recombination events are predicted to occur only once for a given multidomain architecture. However, other scenarios may be relevant in the evolution of specific proteins, such as convergent evolution of multidomain architectures. With this in mind, we study glutaredoxin (GRX) domains, because these domains of approximately one hundred amino acids are widespread in archaea, bacteria and eukaryotes and participate in fusion proteins. GRXs are responsible for the reduction of protein disulfides or glutathione-protein mixed disulfides and are involved in cellular redox regulation, although their specific roles and targets are often unclear.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this work we analyze the distribution and evolution of GRX proteins in archaea, bacteria and eukaryotes. We study over one thousand GRX proteins, each containing at least one GRX domain, from hundreds of different organisms and trace the origin and evolution of the GRX domain within the tree of life.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our results suggest that single domain GRX proteins of the CGFS and CPYC classes have, each, evolved through duplication and divergence from one initial gene that was present in the last common ancestor of all organisms. Remarkably, we identify a case of convergent evolution in domain architecture that involves the GRX domain. Two independent recombination events of a TRX domain to a GRX domain are likely to have occurred, which is an exception to the dominant mechanism of domain architecture evolution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alves</LastName>
<ForeName>Rui</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Lleida, Spain. ralves@cmb.udl.es</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vilaprinyo</LastName>
<ForeName>Ester</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sorribas</LastName>
<ForeName>Albert</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herrero</LastName>
<ForeName>Enrique</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>03</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001105" MajorTopicYN="N">Archaea</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020539" MajorTopicYN="N">Sequence Analysis, Protein</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>03</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19321008</ArticleId>
<ArticleId IdType="pii">1471-2148-9-66</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2148-9-66</ArticleId>
<ArticleId IdType="pmc">PMC2679010</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1997 Sep 5;271(5):679-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9299319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:669-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18366324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biotheor. 2009 Jun;57(1-2):187-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2006 Jun 29;361(1470):1007-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16754611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2000 Nov;25(11):537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11084362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Feb 11;346(1):355-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15663950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Aug;18(8):1141-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jul 10;20(10):1603-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2006 Sep-Oct;41(5):269-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16911956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Oct;272(19):5064-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1981 Jan;78(1):454-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6165991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2004;79(3):305-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16328797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;183:63-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2156132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 May;24(5):1181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2007 Feb;59(2):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17454295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Sep;18(9):486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12175810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2007;2:21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17708768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D25-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2005 Jan;62(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15619004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2003 Jan;10(1):59-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12483203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Jul 18;272(29):18044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Feb;25(2):254-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18025066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Apr 15;21(8):1464-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15585523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Mar 15;3(3):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7788290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Apr;143(4):1452-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17337525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2002 Aug 1;48(2):227-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12112692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2008 Jul 1;475(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1415-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2179-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8384715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 Sep;33(9):444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18656364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Mar;15(3):352-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15710748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Jun;64(12):1518-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17415523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Feb 20;336(3):809-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Feb 5;47(5):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18171082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1685-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16720602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2008 Jun;19(6):2673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 May 17;44(19):7156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 22;437(7058):512-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2004;5(4):328-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1994 Dec;4(6):851-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7888755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381852</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
<name sortKey="Sorribas, Albert" sort="Sorribas, Albert" uniqKey="Sorribas A" first="Albert" last="Sorribas">Albert Sorribas</name>
<name sortKey="Vilaprinyo, Ester" sort="Vilaprinyo, Ester" uniqKey="Vilaprinyo E" first="Ester" last="Vilaprinyo">Ester Vilaprinyo</name>
</noCountry>
<country name="Espagne">
<noRegion>
<name sortKey="Alves, Rui" sort="Alves, Rui" uniqKey="Alves R" first="Rui" last="Alves">Rui Alves</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19321008
   |texte=   Evolution based on domain combinations: the case of glutaredoxins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19321008" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020